Ideas after the SLAC/INT workshop

Ulrich Nierste Fermilab

Outline

1.
$$2\beta + \gamma$$
 from $B_d(t) \to D^{(*)\pm}\pi^{\mp}$ or $B_d(t) \to D^{(*)\pm}\rho^{\mp}$

- 2. γ from $B \to D^{(*)0}K$
- 3. $a_{\rm CP}$ in $b \to s \overline{q} q$ penguin decays
- 4. Summary

1.
$$2\beta + \gamma$$
 from $B_d(t) \to D^{(*)\pm}\pi^{\mp}$ or $B_d(t) \to D^{(*)\pm}\rho^{\mp}$

The B factories try to extract $2\beta + \gamma$ from a tagged study of $B_d(t) \to D^{(*)\pm}\pi^{\mp}$

Unfortunately

$$r = \left| \frac{A(b \to u)}{A(b \to u)} \right| \sim 0.02$$

Neclecting terms of order r^2 , the time evolution determines

$$r\sin(2\beta + \gamma)\cos\delta$$
 and $r\cos(2\beta + \gamma)\sin\delta$

 \Rightarrow They need extra information on r.

Next slides: from Riccardo Faccini's talk at SLAC/INT workshop.

Determination of r_f

We currently use SU(3) to estimate r_f : $r_f = \frac{A(B^0 \to D^{(*)+}\pi^-/\rho^-)}{A(\overline{B}^0 \to D^{(*)+}\pi^-/\rho^-)}$

$$r_{(*)} \approx \sqrt{\frac{\mathcal{B}(B^0 \to D_s^{(*)+}\pi^-)}{\mathcal{B}(B^0 \to D^{(*)-}\pi^+)}} \left| \frac{V_{cd}}{V_{cs}} \right| \frac{f_{D^{(*)}}}{f_{D_s^{(*)}}}$$

These errors are experimental only

 $r(D\pi) = 0.020 \pm 0.003$

$$r_{(*)} \approx \sqrt{\frac{\mathcal{B}(B^0 \to D_s^{(*)+}\pi^-)}{\mathcal{B}(B^0 \to D^{(*)-}\pi^+)}} \left| \frac{V_{cd}}{V_{cs}} \right| \frac{f_{D^{(*)}}}{f_{D_s^{(*)}}}$$

$$r(D^*\pi) = 0.015^{+0.004}_{-0.006}$$

 B^0

$$r(D\rho) = 0.003 \pm 0.006$$

 $\frac{fD^*_{s}}{fD^*} = 1.10 \pm 0.02$

Inputs:
$$\frac{BR(B^{0} \to D_{s}^{**}\pi^{-})}{BR(B^{0} \to D^{*-}\pi^{+})} = (5.4 \pm 3.6) \cdot 10^{-3}$$

$$BR(B^{0} \to D_{s}^{*}\rho^{-}) < 1.9 \cdot 10^{-5} @ 90\%CL$$

$$\frac{|V_{cd}|}{|V_{cs}|} = 0.2250 \pm 0.0027$$

$$BR(B^{0} \to D^{-}\pi^{+}) : PDG2004$$

$$\frac{fD_{s}}{fD_{s}} = 1.11 \pm 0.01$$

 $BR(B^0 \to D_s^+ \pi^-) = (2.7 \pm 1.0) \cdot 10^{-5}$

 π^-/ρ^-

They relate

to

but a $SU(3)_F$ transformation requires to exchange all d's with s's.

 \Rightarrow Need

Can the Tevatron measure $Br({}^{(}\overline{B}_{s}^{)} \to D_{s}^{(*)-}K^{+})$ or $Br({}^{(}\overline{B}_{s}^{)} \to D_{s}^{(*)-}K^{*+})$? Also $Br(\overline{B}_{s} \to D^{(*)-}K^{+})$ will shed light on SU(3)_F breaking.

Constraint on $2\beta+\gamma$: bayesian

- Flat prior for 2β+γ, strong phases
- ★ Gaussian prior for rf from SU(3) +30% flat (theoretical) error

$$2\beta + \gamma = (88^{+40}_{-39})^{\circ}$$

Constraint on $sin(2\beta+\gamma)$: frequentistic

 \star Current WA + r_f +from SU(3) +30% theoretical

 $|\sin(2\beta+\gamma)|>0.49 @ 68\%CL$ $|\sin(2\beta+\gamma)|>0.27 @ 90\%CL$

100% error on SU(3)

 Still dominated by exp errors. Would you sleep better with 100% error on 'r' derived assuming SU(3)?

$$2\beta + \gamma = (89 \pm 43)^{\circ}$$

was
$$2\beta + \gamma = (88^{+40}_{-39})^{\circ}$$

What in 2008?

- ★ Assuming BaBar+Belle will have 2ab-1
 - Error computed scaling the statistical error with the luminosity and assuming: $\sigma_{\rm syst}(a)=0.009$

- Central values assumed to deviate $\sigma_{\rm syst}(c_{\rm LEP})=0.013$ partial $B\to D^*\pi$ the same number of σ from expected $_{\rm \times 10^4}$

 a_f and $c_{f,LEP}$ values as now

$$a(D^*\pi) = -0.028 \pm 0.007$$

$$c_{LEP}(D^*\pi) = 0.001 \pm 0.011$$

$$a(D\pi) = -0.037 \pm 0.011$$

$$c_{LEP}(D\pi) = -0.018 \pm 0.018$$

$$a(D\rho) = -0.006 \pm 0.014$$

$$c_{LEP}(D\rho) = -0.038 \pm 0.021$$

From BaBan

- ⋆Interpretation: current r_f from SU(3)
 - Error on r_f starts to have an impact

$$2\beta + \gamma = (88^{+29}_{-25})^{\circ}$$

2. γ from $B \rightarrow D^{(*)0}K$

Need branching fractions only.

B factories can study:

Gronau-London-Wyler:

Dunietz:

Gronau, Grossman, Shuhmaher, Soffer, Zupan:

In all cases the smaller amplitude $A(b \to u)$ has roughly the same size. In the GLW method the $A(b \to c)$ amplitude is much larger, but that does not help:

$$Br \propto |A(b \to c)|^2$$
, $a_{\rm CP} \propto r = \frac{|A(b \to u)|}{|A(b \to c)|}$

Thus if a_{CP} is smaller by some factor x, one needs x^2 times as many events to get the same relative accuracy, compensating the gain in Br.

All methods require to study different $(\overline{D^0}) \to f$ decays in the decay chain $B \to (\overline{D^0})X$.

At the B factories a full Dalitz analysis of $(\overline{D^0}) \to K_s \pi^+ \pi^-$ is currently the best method.

Next slides: from Tim Gershon's talk at SLAC/INT workshop.

Sensitivity to γ

Generate a very large number of signal events

Compute the second derivative of the log(L) event by event : weight the event.

$$\sigma^{2}(\gamma) \sim \frac{1}{\frac{d^{2} \ln(L)}{d\gamma^{2}}}$$

BF[(B $^{\pm} \rightarrow D^{0}K^{\pm})(D^{0} \rightarrow K^{0}\pi\pi)$]=(2.2 \pm 0.4)10⁻⁵ a priori a large number of events....

Results

Belle (275 M BB pairs)

$$\phi_3 = 68^{+14}_{-15} \pm 13 \pm 11$$

BaBar (227 M BB pairs)

$$\gamma = 70 \pm 31^{+12}_{-10} + 14$$

Only at the Tevatron one can measure γ from B_s decays:

Gronau, Grossman, Shuhmaher, Soffer, Zupan:

See my Chicago Flavor talk of April 22, 2005:

1 $R_u \lambda^2$

$$\frac{\overline{D^0} \to K^- \pi^+}{\lambda^2}$$

$$D^0 \to K^- \pi^+$$

These measurements of γ from tree-tree interference are modular: One can combine information from different measurements, one can add knowledge gained from new $D^0 \to f$ decays which become accessible with increasing statistics. All decays $B \to D^0 \to f$ decays involve three hadronic parameters related to $B \to D^0 \to f$ and one strong phase δ_f related to $D^0 \to f$. Since e.g. the same $\delta_{K^-\pi^+}$ enters $B^+ \to D^0 \to K^-\pi^+ \to K^+$, $D^0 \to K^-\pi^+ \to K^-\pi^+ \to K^-\pi^+$ and moreover $\delta_{K^-\pi^+}$ can be measured by CLEO-c, the combination of different measurements helps to overconstrain the hadronic parameters involved.

Another example:

 $Br(\overline{B}_d) \to \overline{D^0}[\to K^\pm \pi^\mp]K_S)$ and $Br(\overline{B}_d) \to \overline{D^0}[\to K^{*\pm}K^\mp]K_S$ are not sufficient to determine γ , because one has 4 measurements with 5 parameters. Including $Br(\overline{B}_s) \to \overline{D^0}[\to K^\pm \pi^\mp]\phi$ and $Br(\overline{B}_s) \to \overline{D^0}[\to K^{*\pm}K^\mp]\phi$ adds 3 more parameters and 4 more measurements, and one can solve for γ .

Recommended:

 $http://www.int.washington.edu/talks/WorkShops/int_05_1/People/Grossman_Y/yuval-grossman_RDFTNS.pdf$

http://www.int.washington.edu/talks/WorkShops/int_05_1/People/Soni_A/soni_talk.pdf

3. $a_{\rm CP}$ in $b \to s \overline{q} q$ penguin decays

The mixing induced CP asymmetries in $b \to s\overline{q}q$ decays show a promising deviation from the Standard Model.

Next slides: from Andreas Höcker's and Matthias Neubert's talks at SLAC/INT workshop.

Confronting Loop and Tree Decays

The charmonium measurement:

$$\sin 2\beta = 0.725 \pm \underbrace{0.037}_{0.033 \text{[stat-only]}}$$

HFAG, Winter 2005

Theory uncertainty?

Mannel at CKM 2005

$$\Delta S_{[c\bar{c}]} \equiv \sin 2\beta_{\text{eff}} - \sin 2\beta = (-2.2 \pm 2.2) \times 10^{-4}$$

Conflict with sin2β_{eff} from s-penguin modes?

$$\left\langle \sin 2\beta_{\text{[s-peng]}} \right\rangle - \sin 2\beta_{\text{[cc]}} = \underbrace{-0.30 \pm 0.08}_{3.7\sigma}$$

$$\left\langle \sin 2\beta_{\text{[$\phi/$\eta'/2K_{\rm S}$]}} \right\rangle - \sin 2\beta_{\text{[cc]}} = \underbrace{-0.33 \pm 0.10}_{3.3\sigma}$$

Theory uncertainty?

what is $\Delta S_{[s-peng]}$? positive ?

WG4 at CKM 2005 and today's discussion

SLAC/INT Workshop, Seattle 2005

A. Höcker – sin2β_{eff} with s-penguin decays

The Experimental Program for $sin 2\beta_{eff}$

Mode	CP	Tot. error Belle £ ~ 253 fb ⁻¹	Tot. error BABAR ∠ ~ 195-212 fb ⁻¹	⟨Δ(SM)⟩ [in σ]	Error estimate at 2 ab ⁻¹	Syste- matics	Max. central value for 5σ deviation at 2 ab ⁻¹	Quality [naïve theoretical cleanliness]
φ Κ 0	-1	0.34	0.26	– 1.9	0.10	small	0.22	9 9 9
η' Κ 0	– 1	0.18	0.14	- 2.6	< 0.05	small	0.45	● ● (●)
f ₀ (980)K ⁰	+1	0.42	0.29	– 1.3	< 0.12	Q2B	0.12	● ●
K _S K _S K ⁰	±1	0.71	0.36	- 1.4	< 0.16	vertex	- 0.08	000
K+K-K ⁰	~+1	0.25	0.25	- 1.1	< 0.08	CP	0.31	●(●)
π ⁰ K _S	– 1	0.60	0.32	- 1.4	0.13	vertex	0.07	•
ω Κ ⁰	– 1	0.66	0.36	- 0.6	< 0.15	small	- 0.03	(•)
ρ0Κ0	– 1	-	-	?	?	Q2B	?	(•)
η <i>K</i> _S	+1	-	-	?	?	vertex	?	-
Average	-	0.39 ± 0.11	0.45 ± 0.09	- 3.7	< 0.034	ok	0.53	• •

SLAC/INT Workshop, Seattle 2005

A. Höcker – $sin2\beta_{eff}$ with s-penguin decays

Basic relations

Decay amplitudes:

$$A(\bar{B} \to f) = V_{cb}V_{cs}^* a_f^c + V_{ub}V_{us}^* a_f^u \propto 1 + e^{-i\gamma} d_f$$

where:

$$d_f = \epsilon_{\text{KM}} \frac{a_f^u}{a_f^c} \equiv \epsilon_{\text{KM}} \hat{d}_f \quad \text{with} \quad \epsilon_{\text{KM}} = \left| \frac{V_{ub} V_{us}^*}{V_{cb} V_{cs}^*} \right| \sim 0.025$$

Parameter ε_{KM} determines smallness of the effects

Basic relations

CP asymmetries:

$$\Delta S_f \equiv \frac{2\operatorname{Re}(d_f)\cos(2\beta)\sin\gamma + |d_f|^2\left(\sin(2\beta + 2\gamma) - \sin(2\beta)\right)}{1 + 2\operatorname{Re}(d_f)\cos\gamma + |d_f|^2}$$

$$A_{\mathrm{CP},f} \equiv -C_f = \frac{2(\mathrm{Im}(d_f)\sin\gamma)}{1 + 2\operatorname{Re}(d_f)\cos\gamma + |d_f|^2}.$$

 \square If d_f is small, then both involve independent hadronic parameters

Results: 200000 parameter scans

Require that BRs are reproduced within 3σ

Mode	ΔS_f (Theory)	ΔS_f [Range]	Experiment [3] (BaBar/Belle)
$\pi^0 K_S$	$0.07^{+0.05}_{-0.04}$	[+0.02, 0.15]	$-0.39_{-0.29}^{+0.27} \left(-0.38_{-0.33}^{+0.30}/-0.43_{-0.60}^{+0.60}\right)$
$\rho^0 K_S$	$-0.08^{+0.08}_{-0.12}$	[-0.29, 0.02]	_
$\eta' K_S$	$0.01^{+0.01}_{-0.01}$	[+0.00, 0.03]	$-0.30_{-0.11}^{+0.11} \left(-0.43_{-0.14}^{+0.14}/-0.07_{-0.18}^{+0.18}\right)$
ηK_S	$0.10^{+0.11}_{-0.07}$	[-1.67, 0.27]	
ϕK_S	$0.02^{+0.01}_{-0.01}$	[+0.01, 0.05]	$-0.39_{-0.20}^{+0.20} (-0.23_{-0.25}^{+0.26}/-0.67_{-0.34}^{+0.34})$
ωK_S	$0.13^{+0.08}_{-0.08}$	[+0.01, 0.21]	$-0.18^{+0.30}_{-0.32} \left(-0.23^{+0.34}_{-0.38}/+0.02^{+0.65}_{-0.66}\right)$

Theory vs. Experiment

Conclusions

- Except for ρK_S , QCDF predicts positive ΔS_f , enforcing the disagreement with data
- Very small effect and uncertainty for ΦK_S and $\eta' K_S$, reliable predictions
- Enhancement of color-suppressed amplitudes (C, P_{EW,C}) suggested by ππ and πK data, if true, would not change results significantly

Implications for Tevatron physics

- B_s physics allows to study some pure penguin $b \to s\overline{d}d$ decays: $B_s \to K_S K_S$, $B_s \to K^{0*}K_S$ and so on.
- Look for direct CP violation (need to be lucky with non-zero strong phase). There is no advantage here in B_s over B_d or B^+ .
- The lifetime information in $B_s \to \phi \phi$, $B_s \to K_S K_S$, $B_s \to K^+ K^- \dots$ is sensitive to the potentially new CP phase in $b \to s \overline{q} q$ (see my Chicago Flavor seminar of February 25, 2005).
- A study of $B_s \to \phi \rho$ allows to find out to which extent the new physics amplitude violates isospin.

• In the longer term tagged studies of mixing-induced CP asymmetries in B_s decays are helpful, because in all possible $b \to s\overline{q}q$ decays $B_s \to f$ and $\overline{B}_s \to f$ interfere! (The final state has quark contents $s\overline{s}q\overline{q}$.) The corresponding B_d decays studied by BaBar and BELLE all have a K_S (or K_L) in the final state to allow for the interference of $B_d \to f$ and $\overline{B}_d \to f$. (The final state has quark contents $(d\overline{s} \pm s\overline{d})q\overline{q}$). By the end of Run-II can we hope for a tagged study of e.g. $B_s \to K^+K^-$?

4. Summary

- The measurement of $\sin(2\beta+\gamma)$ from $B_d(t)\to D^{(*)\pm}\pi^{\mp}$ and $B_d(t)\to D^{(*)\pm}\rho^{\mp}$ at the B factories profits from the knowledge of the branching fractions $Br({}^{(}\overline{B}_s)\to D_{(s)}^{(*)-}K^+)$ and $Br({}^{(}\overline{B}_s)\to D_{(s)}^{(*)-}K^{*+})$.
- The determination of γ from $B \to D^0 X$ is modular and profits from the combination of different measurements at BaBar, BELLE, CDF and CLEO-c. Go for $\overline{B}_s^0 \to D^0 \phi!$
- The $b \to s\overline{q}q$ CP puzzle found at the B factories can be studied from the lifetimes in B_s decays, if $\Delta\Gamma_{B_s}$ is large. All $b \to s\overline{q}q$ decays of the B_s meson are sensitive to the interference of $B_s \to f$ and $B_s \to \overline{f}$.